Sort by
GGT1 Suppresses the Development of Ferroptosis and Autophagy in Mouse Retinal Ganglion Cell Through Targeting GCLC.

Glaucoma is a neurodegenerative disorder characterized with optic nerve injury and the loss of retinal ganglion cells (RGCs). Ferroptosis has been proved to be associated with the degradation of RGCs. The aim of this study is to elucidate the relationship between ferroptosis and glaucoma pathogenesis, and unveil the underlying mechanism. Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the proliferation of RGCs. The accumulation of cellular iron was measured by Iron assay kit, and the level of reactive oxygen species (ROS) was detected by fluorescence probe. The mitochondrial morphology and autophagosomes were analysed by using transmission electron microscopy (TEM). The contents of glutathione (GSH) and malondialdehyde (MDA) were tested by a GSH assay kit and an MDA detection kit, respectively. The expression of autophagy-related proteins was detected by Western blotting. A serious cell damage, aberrant iron homeostasis, and oxidative stress was shown in RGC-5 after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and gamma-Glutamyl transpeptidase 1 (GGT1) knockdown, but these effects were significantly alleviated by overexpression of GGT1 or ferroptosis inhibitors. The TEM and immunofluorescent results indicated that mitochondria impairment and autophagosome accumulation in OGD/R-treated cells was improved after GGT1 overexpression, while the phenomenon in GGT1-silenced cells was aggravated. Furthermore, we found that GGT1 can interact with glutamate cysteine ligase catalytic subunit (GCLC) to inhibit autophagy and ferroptosis in RGC-5 cells. GGT1 represses autophagy in RGC-5 cells by targeting GCLC, which further restrains the development of ferroptosis in cells.

Open Access
Relevant
Effects of Stimulus Luminance, Stimulus Color and Intra-Stimulus Color Contrast on Visual Field Mapping in Neurologically Impaired Adults Using Flicker Pupil Perimetry.

We improve pupillary responses and diagnostic performance of flicker pupil perimetry through alterations in global and local color contrast and luminance contrast in adult patients suffering from visual field defects due to cerebral visual impairment (CVI). Two experiments were conducted on patients with CVI (Experiment 1: 19 subjects, age M and SD 57.9 ± 14.0; Experiment 2: 16 subjects, age M and SD 57.3 ± 14.7) suffering from absolute homonymous visual field (VF) defects. We altered global color contrast (stimuli consisted of white, yellow, cyan and yellow-equiluminant-to-cyan colored wedges) in Experiment 1, and we manipulated luminance and local color contrast with bright and dark yellow and multicolor wedges in a 2-by-2 design in Experiment 2. Stimuli consecutively flickered across 44 stimulus locations within the inner 60 degrees of the VF and were offset to a contrasting (opponency colored) dark background. Pupil perimetry results were compared to standard automated perimetry (SAP) to assess diagnostic accuracy. A bright stimulus with global color contrast using yellow (p=0.009) or white (p=0.006) evoked strongest pupillary responses as opposed to stimuli containing local color contrast and lower brightness. Diagnostic accuracy, however, was similar across global color contrast conditions in Experiment 1 (p=0.27) and decreased when local color contrast and less luminance contrast was introduced in Experiment 2 (p=0.02). The bright yellow condition resulted in highest performance (AUC M =0.85±0.10, Mdn=0.85). Pupillary responses and pupil perimetry's diagnostic accuracy both benefit from high luminance contrast and global but not local color contrast.

Open Access
Relevant
Meridional Attentional Asymmetries in Astigmatic Eyes.

To investigate the impact of attention orientation in young myopic adults with astigmatism. The effect of attention on foveal meridional performance and anisotropy was measured in corrected myopes with various levels of astigmatism (with-the-rule astigmatism ≤ -0.75D, Axis: 180 ± 20) using orientation-based attention. Attention was manipulated by instructing subjects to attend to either the horizontal or the vertical line of a central pre-stimulus (a pulsed cross) along separate blocks of trials. For each attention condition, meridional acuity and reaction times were measured via an annulus Gabor target situated remotely from the cross and presented at random horizontally and vertically in a two-alternative forced-choice employing two interleaved staircase procedures (one-up/one-down). Attention modulations were estimated by the difference in performance between horizontal and vertical attention. Foveal meridional performance and anisotropy were strongly affected by the orientation of attention, which appeared critical for the enhancement of reaction times and resolution. Under congruent orienting of attention, foveal meridional anisotropy was correlated with the amount of defocus for both reaction time and resolution, demonstrating greater vertical performance than horizontal performance as myopia increased. Compatible with an attentional compensation of blur through optimal orienting of attention, vertical attention enhanced reaction times compared to horizontal attention and was accompanied by an increase in overall acuity when myopia increased. Increased astigmatism was associated with smaller attention effects and asymmetry, suggesting potential deficits in the compensation of blur in astigmatic eyes. Collectively, attention to orientation plays a significant role in horizontal-vertical foveal meridional anisotropy and can modulate the asymmetry of foveal perception imposed by the optics of the eye in episodes of uncorrected vision. Further work is necessary to understand how attention and refractive errors interact during visual development. These results may have practical implications for methods to enhance vision with attention training in myopic astigmats.

Open Access
Relevant